
Hi everyone, my name is Michal Iwanicki, I work at CD Projekt RED, Polish game 
developer, this talk is titled ‘Normal mapping for low-frequency precomputed 
visibility’. 
 
Today, we’re going to show you a way of combining PRT-like lighting with normal 
mapping,  in a low-cost technique well suited for games and other real-time uses. 

1 



Here is an image of a house rendered with direct-light only PRT, while it has nice soft 
shadow, all details are created with geomety, the technique cannot use normal maps 
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Here we have the same model rendered using our techique, as you can see with 
normal mapping applied.  

 

3 



The goal of this project was to decouple high frequency 
normal variation from gross 
lighting.  
 
There have been several attempts to do so for static lighting, like the work by  
Andrew Wilmott, who used a vector irradiance formulation of radiosity to accelerate 
precomputation. This later became the foundation for radiosity normal mapping 
used by Valve and many others. 
 
Similar ideas have also been used in off-line rendering. 
  
And, while those work really well,  all assume static lighting.  I personally work for a 
company which is focused on RPGs – and for such we simply cannot rely on a single 
static lighting environment. We need a solution that allows us to change lighting 
dynamically – to show passing time, changing weather etc. 
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… and, there are solutions that allow us to dynamically change lighting.  But they 
either don’t model shadows or do not decouple normal variation. 
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Some solutions decouple both factors – local surface variation and lighting like the 
triple products by Ren Ng, bi-scale radiance transfer, and normalmapped prt by 
Peter-Pike. The first two are quite heavyweight techniques, not really suitable for 
games, the last one, to model local effect needs to store complex transfer matrices 
which also makes if diffucult to use in typical game-scenario.  Our technique requires 
less memory, but can only handle soft shadows, not indirect lighting. 
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So, let’s start with a reflectans equation for a rigid object, with diffuse surface lit by 
distant lighting. Lets focus on direct only illumination. 
 
Reflectance equation for such case is given by the following equtions – integral of 
lighting environmen (L) times visibility function (1 when light is visible, 0 when 
obstructed) times clamped cosine oriented along normal at given point over a 
sphere. 
 
Let’s formulate our assumpsions, our needs with regards to those three elements: 
- we want light to by dynamic, possibly changing every frame, but we want it to be 
global for the whole scene 
- visibility is unique for every point on the mesh, so it can't be tiled/etc, but as the 
model is rigid it doesn’t change and, thus, can be precomputed. We can also assume 
that local surface details dont contribute to visibility, so it can be stored at a 
relatively low frequency 
- the last element is cosine term, directly related to the normal vector. To model this 
element we want to use normalmaps, so it will change with highest frequency 
 
As you see it’s a triple product integral. 
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There are ways of computing such integrals. In terms of computer graphics the topic 
has been studied by Ren Ng et al. But like said before, this is really „heavyweight” 
technique. 

One other option  is to merge two of the functions and compute double product 
integral, which turns out to be a lot easier 
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This on the contarty is relatively easy.  
Let’s say we have two functions, A and B. Let’s project them both on a common basis 
l. Properties of integerals and sums, allow us to rearrange it to the form on te right. 
And while this final form is still difficult to compute… 
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… if we decide to use an orthogonal basis, product of 2 basis functions will be 
Kronecker delta function, equal to 1 if the indices are equal and 0 if not 
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Which simplifies our integral to simple dot procuct between two sets of coefficients. 
 
Most of the works in last few years used spherical harmonics, they are REALLY well 
studied, so we’ve just decided to stick to them. 
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As we’re talking about spherical harmonic, it is worth to mention 2 things, which in 
fact are not really obvious. 

 

- SH basis functions are simply polynomials, so when multipling two, let’s say of 
degree A and B, the product will be a polynomial of a degree A+B. 

Since SH are an orthogonal basis, it means then when we multiply 3 functions, that if 
you know the band limit of two of them, energy above the sum of their degrees will 
no contribute to the product. So when multiplying order 4 visibility and by order 3 
clamped cosine, there is no need to use lighting of order higher then 7. 
 
The second imporant thing is that we want to speed up multiple multiplications, if a 
function is a constant, we can use so-called product matrix. John Snyder has a very 
nice technical report that covers how to efficiently compute SH products and 
product matrices efficiently on his web page. 
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So let’s get back to the reflectance equation, and see how PRT utilized this „combine 
2, and use double product” rule. 
What PRT does is it combines visibility and cosine term into a single function, 
projects it to SH, and then, separtly projects visiblity to SH. 
All that is required at runtime is to compute dot product bewteen the resulting sets 
of coefficients, but as you have probably noticed visibility is merged together with 
normal.  
But, since visibility (and thus b vector) is unique across the mesh, we cannot tile or 
somehow reuse those values. Even though the visibility varies smoothly across the 
mesh, to capture small normal variations we need to store this data at very high 
resolution – which is not really practical. 
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So, the key to our idea is to combine the functions in different way.  
 
At the very beginning we assumed that those small normal variations don’t 
contribute to visibility, so we dont need to combine those two terms togheter. We 
project visibility into one set of SH coefficient and then compute product of L times 
H and project the result into another set of coefficients. 
 
As you can see in such way we can fullfill all of our initial assumptions. Visibility V is 
unique, but it is also constant (model is rigid) and relatively low-frequency and can 
be precomputed. LHn is unique for given direction and lighting environment, but as 
we show in a few seconds in can be easly precomputed and tabulated. 
 
Exacly as with PRT, all that is required at runtime is to grab two sets of coefficients 
and compute a dot product. 

14 



As the visibility is stored totaly independently of the surface normal we can 
normalmaps to create local surface details, togheter with all, well known tricks – 
blending, tiling, etc. 
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Let’s see how we store the data needed for the computation.  
 
Storing visibility is pretty straightforward – as the model is rigid we can precompute 
it and store it in a manner similar to lightmaps – we create a unique UV mapping and 
for every texel store SH coefficients. The number of coefficients depends on the 
order of the visibility function we want to use. The higher order, the more accureate 
shadows we get, but we end up with higher number or coefficents.  
 
We used order 3, 4, 6 with respectively 9, 16, 36 coefficients. 
 
To store them we can either atlas the the textures, or use multiple textures, the 
second option being more texture-cache friendly. 
In the simplest form we can just store floating-point values, but we can also use 
some more sophisticated encoding, like the one presented by Jerome Ko, saving 
both texture memory and bandwidth. 
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More interesting is how we store lighting time cosine function – as it depends on 
normal direction.  
We have to tabulate value of this product for all the possible directions of normal 
vector. 
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And while natural solution for such lookup table is cubemap, the problem is that, on 
the contary to visibility, we need to store those coefficients for each color channel – 
which gives us 27 coeffcients for order 3, which is quite a lot – it gives us 7 cubes 
maps. Additionally, on older hardware we dont get filtering between cubemap faces. 
So we have chosen dual paraboloid map as a final form of our look-up table. 2 
hemispheres are laid out side by side on the texture, consequent coefficents are 
atlases one below the other. To ensure C0 continuity we combine it with squre-to-
disc mapping. This texture doesn’t hae to be large, 32x32 for single hemisphere is 
enough. 
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So now we have decoupled visibility from normal variation, but we also wanted to 
dynamically change lighting conditions. 
As you may expect, for different lighting environments we need separete L*H lookup 
textures.  
As those textures contain SH coefficients, we can prepare several and blend then at 
runtime – either on CPU or GPU. 
Or, we can generate them on fly. The key here is the formentioned product matrix. 
We start by tabulatig cosine function for all required directions prior to rendering, 
and then, each frame multiply them by product matrix created from lighting 
function, obtaing a LHn texture. SSE makes it fast enough for real-time use. 

19 



And while this works really nice, there are some minor issues – mainly storage costs 
for visibility function. 
To get more accrate results we need to use higher order spherical harmonics – which 
result in high number of coefficients. To reduce the amount of data wee need to 
store we decided to try to compress visibility functions.  
 
We use PCA for that. Rewriting the reflectance equation to use compressed visiblity 
gives us the following form, which after few rearrangements reduces to sum of 
integral incorporating visibility mean and weighted sum of integrals with principal 
components. 
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So now, instead of storing visibity we only need to store M weights, and instead 
storing LH texture we store those preintegrated textures. They are ordinary textures, 
storing just the color data – in fact, as you may have notices those are just irradiance 
environment maps. 

 

We don’t even need to store them explicitly as texture, but just send those PCA basis 
vectors multiplied by lighting to the GPU and perform convolution with H on the fly. 
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Table compares performance of several options. Measurement were done on Core2 
CPU with NVIDIA Quadro 3600M.  
Table shows performance for uncompressed visibility of order 6 and 4, and 
compressed version using 24, 16 and 12 PCA vectors. As you can compression is a 
huge win, especially that this way, we’re not bound to any specific SH order, we can 
use higher order, and then approximate it with as many coefficients as we need to. 
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To conclude: explicitply encoding and compressing visibility is a good way to 
decouple normal variaion. 
For the future, we would like to experiment with more sophisitcaed compression 
schemes, like CPCA, and introduce indirect lighting. 
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